Course Number and Name

BEC604 - COMMUNICATION ENGINEERING - II

Credits and Contact Hours

3 and 45

Course Coordinator's Name

Mr R.Mohanraj

Text Books and References

TextBook:

1. Bernard Sklar, *"Digital Communication, Fundamentals and Application"*, Pearson Education Asia, 2nd Edition, 2001.

2. Simon Haykin, "Communication Systems", John Wiley & Sons, 4th Edition, 2000.

3. Taub & Schilling, "Principle of Communication Systems", 2nd Edition, 2003.

References:

- 1. John G. Proakis, "Digital Communication", McGraw Hill Inc, 5th Edition, 2008.
- 2. Singh, R.P. & Sapre, S.D, "Communication Systems: Analog & Digital", Tata McGraw-Hill, 5th reprint
- 3. www.scribd.com

Course Description

CO4

CO5 CO6 Μ

Μ

L

Н

- To learn and understand fundamental concepts of communication systems.
- The process of sampling, quantization and coding that are fundamental to the digital transmission of analog signals and digital modulation systems.
- Baseband and passband transmission systems.
- M-ary signaling and spread spectrum Techniques.

	-	-	-		-		-							
Prerequisites							Co-requisites							
Communication Engineering-I								Nil						
		re	equired	, electiv	/e, or se	elected	elective	e (as pe	r Table	5-1)				
						requir	ed							
Course Outcomes (COs)														
CO1: Students will learn about the basic concepts of Sampling, basic concepts of baseband														
transmission of binary data														
CO2: They gain knowledge about basics of digital modulation techniques.														
CO3: They can understand the concepts of spread spectrum digital communication system														
CO	4: To provid	de in-de	epth ana	alysis of	f noise j	perforn	nance ii	n variou	us receiv	vers				
CO	5: Design ba	asic cor	nmunic	ation s	ystems									
CO	6: To under	stand t	he basi	c conce	pts of a	nalog p	oulse m	odulati	on tech	niques				
Stu	Ident Outco	omes (S	Os) fro	m Crite	rion 3 d	covered	d by thi	s Cours	е					
	COs/SOs	а	b	С	d	е	f	g	h	i	i	k	1	
	CO1	H	M	,	M	Ŭ	M	9 H		H	,		-	
	CO2	M	M	Н		М	M	M		H		M	-	
	CO3	M			Н					Н			-	

Μ

Μ

Н

Μ

Μ

List of Topics Covered

UNIT I SAMPLING AND QUANTIZATION

Sampling Process – Aliasing – Instantaneous sampling – Natural Sampling –Flat Sampling – Quantization of signals – sampling and quantizing effects –channel effects – SNR for quantization pulses – data formatting techniques –Time division multiplexing.

UNIT II DIGITAL MODULATION

PCM Systems – Noise Considerations in PCM system – Overall Signal-tonoise ratio for PCM system – Threshold effect – Channel Capacity – Virtues, Limitations & Modification of PCM system – PCM Signal Multiplexing – Differential PCM – Delta Modulation – Noise Considerations in Delta Modulation – SNR Calculations – Comparison of PCM, DPCM & DM.

UNIT III BASE BAND PULSE TRANSMISSION

Maximum likelihood receiver structure – Matched filter receiver – Probability error of the Matched filter – Intersymbol interference – Nyquist criterion for distortionless baseband transmission – Correlative coding – Eye pattern.

UNIT IV PASS BAND DATA TRANSMISSION

Pass Band Transmission Model – Generation, Detection, Signal Space Diagram, Probability of Error for BFSK, BPSK, QPSK, DPSK, and Schemes – Comparison.

UNIT V M-ARY SIGNALING AND INTRODUCTION TO SPREAD SPECTRUM TECHNIQUES 9

M-ary signaling, vectoral view of MPSK and MFSK signaling, symbol error performance of M-ary systems –Introduction – Discrete Sequence Spread Spectrum technique – Use of Spread Spectrum with CDMA-Ranging Using Discrete Sequence Spread Spectrum – Frequency Hopping Spread Spectrum –Generation & Characteristics of PN Sequence.

9

9

9

9